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So far... - Part I

Main result

Let G be a plane elementary bipartite graph other than K2. Then
the following statements are equivalent.
(i) The resonance graph R(G ) is a daisy cube.
(ii) The Fries number of G equals the number of finite faces of G .
(iii) G is peripherally 2-colorable.
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For example- fibonaccene
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Fibonacene as a bipartite outerplane graph
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Fibonacene as peripherally 2-colorable (outerplane) graph
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Plane but not an outerplane peripherally 2-colorable
graph
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A perfect matching of a peripherally 2-colorable
(outerplane) graph...
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...can be extended in a unique way
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Molecule of benzene
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Molecular graph of benzene
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Maximal resonant sets
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Resonance graph
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Djoković-Winkler relation Θ

eΘf ∼ d(u1, v1) + d(u2, v2) 6= d(u1, v2) + d(u2, v1)
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Resonance graphs
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Partial cubes
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Fibonacci cubes
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From Fibonacci to Lucas cubes
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Lucas cubes
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Resonance graphs as a daisy cubes
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Lemma

Assume that G is a plane weakly elementary bipartite graph other
than K2. Let H(R(G )) be the set of nontrivial hypercubes of
R(G ) and RS(G ) be the set of nonempty resonant sets of G .
Define f : H(R(G ))→ RS(G ) such that if Q is a k-dimensional
hypercube of R(G ) for a positive integer k, then f (Q) = SQ ,
where SQ is a cardinality k resonant set of G with the property
that each finite face in SQ is a face-label of a Θ-class of Q. Then
f is well-defined and surjective. Moreover, f is a bijection only
when RS(G ) is a set of canonical resonant sets of G .
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Assume that G is a plane weakly elementary bipartite graph other
than K2. Let H(R(G )) be the set of nontrivial hypercubes of
R(G ) and RS(G ) be the set of nonempty resonant sets of G .
Define f : H(R(G ))→ RS(G ) such that if Q is a k-dimensional
hypercube of R(G ) for a positive integer k, then f (Q) = SQ ,where
SQ is a cardinality k resonant set of G with the property that each
finite face in SQ is a face-label of a Θ-class of Q. Then f is
well-defined and surjective. Moreover, f is a bijection only when
RS(G ) is a set of canonical resonant sets of G .
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Visualization of lemma



Overview
Maximal resonant sets and daisy cubes

Independent sets and daisy cubes
When daisy cubes are resonance graphs

Algorithms

Visualization of lemma
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Canonical resonant set

A resonant set S of G is canonical if G − S is empty or has a
unique perfect matching.
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unique perfect matching.
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Forcing infinite face

Lemma

Let G be a plane elementary bipartite graph other than K2. Then
the infinite face of G is forcing if and only if any two vertex
disjoint cycles C1 and C2 such that C1 ∪C2 is a nice subgraph of G
have disjoint interiors.
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Forcing infinite face

Lemma

Let G be a plane elementary bipartite graph other than K2. Then
the infinite face of G is forcing if and only if any two vertex
disjoint cycles C1 and C2 such that C1 ∪C2 is a nice subgraph of G
have disjoint interiors.

Corollary

Let G be an elementary benzenoid system. Then the infinite face
of G is forcing if and only if G has no coronenes as nice subgraphs.
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Max. hypercubes one-to-one max. resonant sets

Lemma

Let G be a plane elementary bipartite graph other than K2.
Assume that the infinite face of G is forcing. Then:

(i) S is a maximal resonant set of G if and only if S is a
canonical resonant set of G.

(ii) There is a bijection between the set of maximal hypercubes of
R(G ) and the set of maximal resonant sets of G which maps
a k-dimensional maximal hypercube to a cardinality k
maximal resonant set, where k is a positive integer.
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Independent sets

Independent set ... a set of pairwise nonadjacent vertices of G

IS(G )... a set of all independendent sets of G
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Peripherally 2-colorable graph G and the inner dual of G ∗
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Resonants sets of G and independent sets of G ∗
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Connection between (max.) resonant sets and (max.)
independent sets

Lemma

Assume that G is a peripherally 2-colorable graph with inner dual
G ∗. Let RS(G ) be the set of nonempty resonant sets of G and
IS(G ∗) be the set of nonempty independent sets of G ∗. Define
g : RS(G )→ IS(G ∗) such that g(S) = S∗, where S is a resonant
set of G and S∗ is the corresponding independent set of G ∗. Then
g is well-defined. Moreover, g induces a bijection between the set
of maximal resonant sets of G and the set of maximal independent
sets of G ∗, which maps a cardinality k maximal resonant set of G
to a cardinality k maximal independent set of G ∗, where k is a
positive integer.
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Connection between (max.) resonant sets and (max.)
independent sets

Lemma

Assume that G is a peripherally 2-colorable graph with inner dual
G ∗. Let RS(G ) be the set of nonempty resonant sets of G and
IS(G ∗) be the set of nonempty independent sets of G ∗. Define
g : RS(G )→ IS(G ∗) such that g(S) = S∗, where S is a resonant
set of G and S∗ is the corresponding independent set of G ∗. Then
g is well-defined and g induces a bijection between the set of
maximal resonant sets of G and the set of maximal independent
sets of G ∗, which maps a cardinality k maximal resonant set of G
to a cardinality k maximal independent set of G ∗, where k is a
positive integer.
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G with inner dual G ∗ and the resonance graph R(G )
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Max. hypercubes of R(G ) → max. resonant sets of G →
max. independent sets of G ∗
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Corollary

short version

f : H(R(G ))→ RS(G ), g : RS(G )→ IS(G ∗)

Then

g ◦ f : H(R(G ))→ IS(G ∗) is a bijection (all maximal)
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Corollary
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τ -graph

The τ -graph Hτ of H is a graph whose vertex set is the set of
Θ-classes of H, and two distinct Θ-classes E and F are adjacent in
Hτ if H has two edges e ∈ E and f ∈ F such that e and f form a
convex path on three vertices, that is, e = uv , f = vw , and v is
the only common neighbor of u and w
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Resonance graph R(G ) and τ -graph R(G )τ
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τ -graph of R(G ) and inner dual G ∗ of G
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Finally - when the resonance graph is a daisy cube?

Theorem

Let G be a plane elementary bipartite graph other than K2. Then
its resonance graph R(G ) is a daisy cube if and only if there is a
bijection φ between the set of maximal hypercubes of R(G ) and
the set of maximal independent sets of the inner dual G ∗ of G,
where R(G )τ is a tree and is isomorphic to the inner dual G ∗ of G,
and φ maps a k-dimensional maximal hypercube Q of R(G ) to a
cardinality k maximal independent set S∗

Q of G ∗ with the property
that each vertex of S∗

Q corresponds to a face-label of a Θ-class of
Q, where k is a positive integer.
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When the daisy cube is a resonance graph?

Lemma

Let A and B be daisy cubes. If their τ -graphs Aτ and Bτ are
isomorphic, then A and B are isomorphic.
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Main result

Theorem

A daisy cube H with at least one edge is a resonance graph of a
plane bipartite graph if and only if its τ -graph Hτ is a forest.
Moreover, H is a resonance graph of a plane elementary bipartite
graphif and only if its τ -graph Hτ is a tree.
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Two corollaries

Fibonacci cubes

The number of maximal hypercubes of a Fibonacci cube Γn equals
the Padovan number an+1 for any n ≥ 1.

Γτ
n = Pn and |MIS(Pn)| = an+1

an = an−2 + an−3, a0 = a1 = a2 = 1



Overview
Maximal resonant sets and daisy cubes

Independent sets and daisy cubes
When daisy cubes are resonance graphs

Algorithms

Two corollaries

Fibonacci cubes

The number of maximal hypercubes of a Fibonacci cube Γn equals
the Padovan number an+1 for any n ≥ 1.

Γτ
n = Pn and |MIS(Pn)| = an+1

an = an−2 + an−3, a0 = a1 = a2 = 1



Overview
Maximal resonant sets and daisy cubes

Independent sets and daisy cubes
When daisy cubes are resonance graphs

Algorithms

Two corollaries

Lucas cubes

Let Λn be a Lucas cube where n ≥ 3. Then its τ -graph Λτ
n is a

cycle Cn.

Corrolary: Lucas cubes cannot be the resonance graphs of a plane
bipartite graph.
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1 Input: RFD(G1,G2, . . . ,Gn) of a p2-c G associated with a sequence
s1, . . . , sn of finite faces.

Output: Binary codes for all perfect matchings of G .
2 B := {00, 01, 10}
3 for r = 2, . . . , n − 1 do
4 B ′ := ∅
5 set j ∈ {1, . . . , r} such that sj is adjacent to sr+1

6 i = min{l | sl is adjacent to sj}
7 for each x ∈ B do
8 B ′ := B ′ ∪ {x0}
9 if xj = 0 then
10 B ′ := B ′ ∪ {x1}
11 end

12 end
13 B := B ′

14 end
15 return B
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Binary code labelling
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Input: Inner dual G∗ with vertices s1, . . . , sn of a p2-c G .
Output: Binary codes for all perfect matchings of G .

1 find the maximal independent sets I1, . . . , Ik of G∗

2 B := ∅
3 for r = 1, . . . , k do
4 for every subset X of Ir do
5 B := B ∪ {x1x2 . . . xn}, where for every i ∈ {1, . . . , n}, xi = 1

if si ∈ X and xi = 0 if si /∈ X
6 end

7 end
8 return B
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Example
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Thanks for your time
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