Resonance Graphs and Daisy Cubes – Part II

Petra Žigert Pleteršek

joint work with Simon Brezovnik, Zhongyuan Che, Niko Tratnik

Faculty of Natural Sciences and Mathematics & Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

CroCo Days, Zagreb, 2024

Maximal resonant sets and daisy cubes Independent sets and daisy cubes When daisy cubes are resonance graphs Algorithms

So far... - Part I

Main result

Let G be a plane elementary bipartite graph other than K_2 . Then the following statements are equivalent.

(i) The resonance graph R(G) is a daisy cube.

(ii) The Fries number of G equals the number of finite faces of G.

(*iii*) G is peripherally 2-colorable.

Maximal resonant sets and daisy cubes Independent sets and daisy cubes When daisy cubes are resonance graphs Algorithms

For example- fibonaccene

Maximal resonant sets and daisy cubes Independent sets and daisy cubes When daisy cubes are resonance graphs Algorithms

Fibonacene as a bipartite outerplane graph

Maximal resonant sets and daisy cubes Independent sets and daisy cubes When daisy cubes are resonance graphs Algorithms

Fibonacene as peripherally 2-colorable (outerplane) graph

Maximal resonant sets and daisy cubes Independent sets and daisy cubes When daisy cubes are resonance graphs Algorithms

Plane but NOT an outerplane peripherally 2-colorable graph

Maximal resonant sets and daisy cubes Independent sets and daisy cubes When daisy cubes are resonance graphs Algorithms

A perfect matching of a peripherally 2-colorable (outerplane) graph...

(日)(四)(四)(四)(四)(四)(日)

Maximal resonant sets and daisy cubes Independent sets and daisy cubes When daisy cubes are resonance graphs Algorithms

...can be extended in a unique way

(日)(四)(四)(四)(四)(日)

Molecule of benzene

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ● のぐら

Molecular graph of benzene

▲口▼▲□▼▲目▼▲目▼ 目 少え⊙

Maximal resonant sets

{1,3}

MAX RESONANT SETS

623

<ロ> <回> <回> <目> <目> <目> <回> <回> <回> <回> <回> <回> <回</p>

Resonance graph

Djoković-Winkler relation Θ

 $e\Theta f \sim d(u_1, v_1) + d(u_2, v_2) \neq d(u_1, v_2) + d(u_2, v_1)$

< ロ > < 同 > < 三 > < 三 >

э

Resonance graphs

Partial cubes

Fibonacci cubes

From Fibonacci to Lucas cubes

▲日▼▲□▼▲□▼▲□▼▲□▼ ④ ● ●

Lucas cubes

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ろんの

Resonance graphs as a daisy cubes

Lemma

Assume that G is a plane weakly elementary bipartite graph other than K₂. Let $\mathcal{H}(R(G))$ be the set of nontrivial hypercubes of R(G) and $\mathcal{RS}(G)$ be the set of nonempty resonant sets of G. Define $f : \mathcal{H}(R(G)) \to \mathcal{RS}(G)$ such that if Q is a k-dimensional hypercube of R(G) for a positive integer k, then $f(Q) = S_Q$, where S_Q is a cardinality k resonant set of G with the property that each finite face in S_Q is a face-label of a Θ -class of Q. Then f is well-defined and surjective. Moreover, f is a bijection only when $\mathcal{RS}(G)$ is a set of canonical resonant sets of G.

Lemma

Assume that G is a plane weakly elementary bipartite graph other than K_2 . Let $\mathcal{H}(R(G))$ be the set of nontrivial hypercubes of R(G) and $\mathcal{RS}(G)$ be the set of nonempty resonant sets of G. Define $f : \mathcal{H}(R(G)) \to \mathcal{RS}(G)$ such that if Q is a k-dimensional hypercube of R(G) for a positive integer k, then $f(Q) = S_Q$, where S_Q is a cardinality k resonant set of G with the property that each finite face in S_Q is a face-label of a Θ -class of Q. Then f is well-defined and surjective. Moreover, f is a bijection only when $\mathcal{RS}(G)$ is a set of canonical resonant sets of G.

Visualization of lemma

Visualization of lemma

▲ロ▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 … 釣�?

Canonical resonant set

A resonant set S of G is canonical if G - S is empty or has a unique perfect matching.

Canonical resonant set

A resonant set S of G is canonical if G - S is empty or has a unique perfect matching.

Forcing infinite face

Lemma

Let G be a plane elementary bipartite graph other than K_2 . Then the infinite face of G is forcing if and only if any two vertex disjoint cycles C_1 and C_2 such that $C_1 \cup C_2$ is a nice subgraph of G have disjoint interiors.

Forcing infinite face

Lemma

Let G be a plane elementary bipartite graph other than K_2 . Then the infinite face of G is forcing if and only if any two vertex disjoint cycles C_1 and C_2 such that $C_1 \cup C_2$ is a nice subgraph of G have disjoint interiors.

Corollary

Let G be an elementary benzenoid system. Then the infinite face of G is forcing if and only if G has no coronenes as nice subgraphs.

Max. hypercubes ONE-TO-ONE max. resonant sets

Lemma

Let G be a plane elementary bipartite graph other than K_2 . Assume that the infinite face of G is forcing. Then:

- (i) S is a maximal resonant set of G if and only if S is a canonical resonant set of G.
- (ii) There is a bijection between the set of maximal hypercubes of R(G) and the set of maximal resonant sets of G which maps a k-dimensional maximal hypercube to a cardinality k maximal resonant set, where k is a positive integer.

Independent sets

- Independent set ... a set of pairwise nonadjacent vertices of G
- $\mathcal{IS}(G)$... a set of all independendent sets of G

Peripherally 2-colorable graph G and the inner dual of G^*

(ロ)(四)(日)(日)(日)(日)

Resonants sets of G and independent sets of G^*

・ロト・西ト・西・・日・ つんの

Connection between (max.) resonant sets and (max.) independent sets

Lemma

Assume that G is a peripherally 2-colorable graph with inner dual G^* . Let $\mathcal{RS}(G)$ be the set of nonempty resonant sets of G and $\mathcal{IS}(G^*)$ be the set of nonempty independent sets of G^* . Define $g: \mathcal{RS}(G) \to \mathcal{IS}(G^*)$ such that $g(S) = S^*$, where S is a resonant set of G and S^* is the corresponding independent set of G^* . Then g is well-defined. Moreover, g induces a bijection between the set of maximal resonant sets of G and the set of maximal independent set of G to a cardinality k maximal independent set of G^* , where k is a positive integer.

Connection between (max.) resonant sets and (max.) independent sets

Lemma

Assume that *G* is a peripherally 2-colorable graph with inner dual G^* . Let $\mathcal{RS}(G)$ be the set of nonempty resonant sets of *G* and $\mathcal{IS}(G^*)$ be the set of nonempty independent sets of G^* . Define $g: \mathcal{RS}(G) \to \mathcal{IS}(G^*)$ such that $g(S) = S^*$, where *S* is a resonant set of *G* and S^* is the corresponding independent set of G^* . Then *g* is well-defined and *g* induces a bijection between the set of maximal resonant sets of *G* and the set of maximal independent set of *G* to a cardinality *k* maximal independent set of *G**, where *k* is a positive integer.

G with inner dual G^* and the resonance graph R(G)

Max. hypercubes of $R(G) \rightarrow$ max. resonant sets of $G \rightarrow$ max. independent sets of G^*

short version

$$f: \mathcal{H}(R(G)) \to \mathcal{RS}(G), \quad g: \mathcal{RS}(G) \to \mathcal{IS}(G^*)$$

Then

 $g \circ f : \mathcal{H}(R(G)) \to \mathcal{IS}(G^*)$ is a bijection (all maximal)

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Corollary

The τ -graph H^{τ} of H is a graph whose vertex set is the set of Θ -classes of H, and two distinct Θ -classes E and F are adjacent in H^{τ} if H has two edges $e \in E$ and $f \in F$ such that e and f form a convex path on three vertices, that is, e = uv, f = vw, and v is the only common neighbor of u and w

Resonance graph R(G) and τ -graph $R(G)^{\tau}$

au-graph of R(G) and inner dual G^* of G

Finally - when the resonance graph is a daisy cube?

Theorem

Let G be a plane elementary bipartite graph other than K_2 . Then its resonance graph R(G) is a daisy cube if and only if there is a bijection ϕ between the set of maximal hypercubes of R(G) and the set of maximal independent sets of the inner dual G^* of G, where $R(G)^{\tau}$ is a tree and is isomorphic to the inner dual G^* of G, and ϕ maps a k-dimensional maximal hypercube Q of R(G) to a cardinality k maximal independent set S_Q^* of G^* with the property that each vertex of S_Q^* corresponds to a face-label of a Θ -class of Q, where k is a positive integer.

When the daisy cube is a resonance graph?

Lemma

Let A and B be daisy cubes. If their τ -graphs A^{τ} and B^{τ} are isomorphic, then A and B are isomorphic.

Main result

Theorem

A daisy cube H with at least one edge is a resonance graph of a plane bipartite graph if and only if its τ -graph H^{τ} is a forest. Moreover, H is a resonance graph of a plane elementary bipartite graphif and only if its τ -graph H^{τ} is a tree.

Two corollaries

Fibonacci cubes

The number of maximal hypercubes of a Fibonacci cube Γ_n equals the Padovan number a_{n+1} for any $n \ge 1$.

→ < Ξ →</p>

Two corollaries

Fibonacci cubes

The number of maximal hypercubes of a Fibonacci cube Γ_n equals the Padovan number a_{n+1} for any $n \ge 1$.

→ < Ξ →</p>

$$\Gamma_n^{\tau} = P_n$$
 and $|\mathsf{MIS}(P_n)| = a_{n+1}$

$$a_n = a_{n-2} + a_{n-3}, \; a_0 = a_1 = a_2 = 1$$

Two corollaries

Lucas cubes

Let Λ_n be a Lucas cube where $n \ge 3$. Then its τ -graph Λ_n^{τ} is a cycle C_n .

Two corollaries

Lucas cubes

Let Λ_n be a Lucas cube where $n \ge 3$. Then its τ -graph Λ_n^{τ} is a cycle C_n .

Corrolary: Lucas cubes cannot be the resonance graphs of a plane bipartite graph.

▲日▼▲□▼▲田▼▲田▼ 田 ろくの

```
1 Input: RFD(G_1, G_2, \ldots, G_n) of a P2-C G associated with a sequence
            s_1, \ldots, s_n of finite faces.
   Output: Binary codes for all perfect matchings of G.
_{2} B := \{00, 01, 10\}
 3 for r = 2, ..., n - 1 do
       B' := \emptyset
 4
       set j \in \{1, \ldots, r\} such that s_i is adjacent to s_{r+1}
 5
       i = \min\{I \mid s_I \text{ is adjacent to } s_i\}
 6
       for each x \in B do
 7
            B' := B' \cup \{x0\}
 8
            if x_i = 0 then
 9
             B' := B' \cup \{x1\}
10
            end
11
        end
12
       B := B'
13
14 end
15 return B
```

Binary code labelling

Input: Inner dual G^* with vertices s_1, \ldots, s_n of a P2-C G.Output: Binary codes for all perfect matchings of G.1 find the maximal independent sets l_1, \ldots, l_k of G^* 2 $B := \emptyset$ 3 for $r = 1, \ldots, k$ do4for every subset X of l_r do5 $B := B \cup \{x_1 x_2 \ldots x_n\}$, where for every $i \in \{1, \ldots, n\}$, $x_i = 1$ if $s_i \in X$ and $x_i = 0$ if $s_i \notin X$ 6end8 return B

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ろんの

Example

Example

▲□▶▲□▶▲□▶▲□▶ = ● ●

Example

<ロト < 部 > < 目 > < 目 > < 目 > < の < 0</p>

THANKS FOR YOUR TIME